
Getting Started with AWS Lambda 

When building software, sometimes you just want to set up a way to perform one 
simple, self-contained task or action with your code. Going through all the work of 
creating, setting up, and configuring an entirely new application and the handful of 
different environments necessary to properly test and deploy your “miniature app” 
often feels like overkill, almost like serving up a tiny bit of food on a massive plate. The 
food tastes fine and serves a good purpose by giving you some energy, but you really 
don’t need that much plate, all that overhead! How can we find the proper size of 
“plate” for our simple, self-contained task we just coded up? Enter AWS Lambda.




Source: New York Times




AWS Lambda bills itself as a “Function as a Service” or “serverless” solution. AWS’s promo 
page for Lambda describes it like so: “Run code without thinking about servers. Pay for only 
the compute time you consume.” At the time of writing this, Lambda allows you to upload C#, 
Java, Node.js, or Python code for your Lambda function. You can quickly configure things like 
environment variables needed for the function and the amount of memory to allocate toward 
the function’s execution, and you can even test your function straight from the browser! When 
considering solutions for how to host our one-off, self-contained tasks at Experience, all of 
these things made our choice to use AWS Lambda a no-brainer. We were able to get up and 
running very quickly with Lambda, and I’m going to show you our real-world use case and how 
simple it is to go from step 0 to working in production.


At Experience, we partner with several hundred sports and live entertainment properties 
around the world that use our ticketing solutions, namely our mobile web application. We allow 
each partner to configure several aspects of the look and feel of the web application to fit their 
organization’s branding, e.g. colors, logos, and fonts. All of these things that our partners 
configure need to make their way down to users’ browsers one way or another, and the way 
we’ve chosen to do this is, naturally, in CSS. If we were to include all of the custom CSS rules 
for every partner into one massive file, it would end up being around 1 MB gzipped, which is 
unacceptably large. Instead, we opted to generate one CSS file per partner that would contain 
our base CSS rules that remain constant across all partners as well as that partner’s bespoke 
styles. This approach would bring the size of each CSS file down around 70 KB gzipped, which 
is a massive improvement. Each partner’s version of our web application is already given its 
own subdomain (e.g. hawks.expapp.com, falcons.expapp.com, etc.) to create clear separation 
between each partner’s offerings, so it made sense to give each subdomain its own stylesheet.


Our requirements were pretty straightforward. The partner-specific styles are stored in a table 
in our Postgres database, so we needed a simple way of querying that table and sending that 
data to our Grunt process, which would then inject the style values into a Sass file and spit out 
the CSS file for each partner.


Most of our application code is written in the Groovy language, so I decided to write this 
Lambda function code in Groovy as well. Groovy runs on the JVM, so we can easily compile 
our code, package it up, and upload that to AWS, and Lambda will never know the difference. 


https://aws.amazon.com/lambda
http://hawks.expapp.com
http://falcons.expapp.com


Now onto the code…


import	com.amazonaws.services.lambda.runtime.Context	

import	com.amazonaws.services.lambda.runtime.RequestHandler	

class	GroupStylesGenerator	implements	RequestHandler<Map,	Map>	{	

			Map	handleRequest(Map	request,	Context	context)	{	

								def	dbName	=	request.nonProdDbName	

								def	sqlResults	=	runSqlQuery(dbName)	

								return	getGroupStylesBySubdomain(sqlResults)	

				}	

				static	def	runSqlQuery(dbName)	{	

								def	sql	=	initConnection(dbName)	

								def	results	=	sql.getQueryResults('''	

												SELECT	...	FROM	my_table	...	

								''')	

								sql.closeConnection()	

								return	results	

				}	

				static	def	getGroupStylesBySubdomain(sqlResults)	{	

								...	

				}	

...	

}	

Note: This is leaving out some implementation details unnecessary for this blog post, so just 
know it wasn’t quite this simple for our complete solution.


This is our implementation of the code that we’ll upload to Lambda. Let’s go through it from 
top to bottom. We’re importing a couple classes from AWS’s Lambda library, which can be 
found here. We’re implementing the RequestHandler class, which is required for any JVM code 
that will handle an incoming request on Lambda. Our handleRequest method is the method 

https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-core


that will be run when we send an HTTP request to the endpoint that is exposed for us by 
Lambda. There’s nothing special about that method name; we’ll manually configure our handler 
method in the Lambda web interface. Our handleRequest method takes a request param and a 
context param. The request param will contain the request payload, and the context param 
isn’t needed for our implementation. That request param can be a variety of types, such as a 
Map, a Stream, or a POJO type of your own. For our purposes, we’re taking in a JSON payload 
and also responding in JSON, so Lambda can most easily use the Map type to convert to and 
from JSON on our behalf. You’ll see the interface typing for RequestHandler of <Map, Map>, 
signifying that we’ll be taking in a Map and returning a Map, respectively. Same goes for our 
method signature; we have a request param type of Map and a return type of Map.


Next, we grab the database name from our request so we can use this script in different 
environments, run our SQL query, and then run our getGroupStylesBySubdomain method, 
which essentially organizes the query results and returns a Map. When we return the result of 
that method from our handleRequest method, Lambda takes that Map, converts it to JSON, 
and responds to the original request with that JSON data.


After writing our Groovy code, it’s time to zip everything up and upload it to Lambda. We just 
need to include our libraries (the Groovy library, the PostgreSQL library, and the 
aforementioned Lambda core library) in a lib folder adjacent to our Groovy file. Then we can run 
a quick Bash script to compile and zip all our files up:


groovyc	-cp	"./lib/*"	-d	build	GroupStylesGenerator.groovy	

cp	-R	lib	build/lib	

cd	build	

zip	-r	GroupStylesGenerator.zip	*.class	lib	

Now we can go into the Lambda web interface, upload our zip file, specify our runtime, and 
specify our handler.


https://mvnrepository.com/artifact/org.codehaus.groovy/groovy-all
https://mvnrepository.com/artifact/org.postgresql/postgresql


In order to actually use this in our Grunt process, we need to write some JavaScript that will 
make the request to our new Lambda function. Here’s our code:


const	lambdaParams	=	{	

				InvocationType:	"RequestResponse",	

				LogType:	"None",	

				FunctionName	=	"getGroupStyles",	

				Payload:	`{	"dbName":	"${process.env.DB_NAME}"	}`	

};	

const	AWS	=	require('aws-sdk');	

new	AWS.Lambda().invoke(lambdaParams,	(error,	data)	=>	{	

				const	responseFromLambda	=	JSON.parse(data.Payload);	

				...	

});	

We are using the aws-sdk Node package, which makes it quite simple to work with AWS in 
JavaScript. We have our AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY 
environment variables set so that the AWS SDK can authenticate our account and call our 
lambda function. We then create a Lambda instance and invoke the Lambda function. The 
params we pass include some things like “getGroupStyles”, which is what we named our 
Lambda function in the web interface, and a small JSON payload, which for some reason 
needed to be a string instead of a plain old object.


Our callback for handling the Lambda function’s response is straightforward. It’s an error-first 
callback, so we’ll get our style data back as the second parameter. Lambda wraps a JSON 
object around the response data and also stringifies the response data, so we needed to do a 
JSON.parse(data.Payload) to “unwrap” the data we wanted. Now we can use the data we’ve 
gotten from our Lambda function and inject it into our Sass and generate all of our CSS files!


Now, when we push our web app to production, our Grunt task sends a single request to our 
Lambda function, the JVM environment quickly spins up, the Groovy code queries our 
database, and it returns some JSON for Grunt to handle, and this all happens in just a few 
seconds. This was a perfect use case for AWS Lambda, and it has been working well for us for 
a few months now.




If working on this type of thing sounds interesting to you, come work with us!


https://www.expapp.com/about/#careers

